
A Scalable Architecture of a Structured LDPC Decoder1

Jason Kwok-San Lee, Benjamin Lee, Jeremy Thorpe, Kenneth Andrews, Sam Dolinar, Jon Hamkins
Jet Propulsion Laboratory, California Institute of Technology

{kwoklee, leeb, jeremy}@caltech.edu {andrews, sam, hamkins}@shannon.jpl.nasa.gov

Abstract — We present a scalable decoding architec-
ture for a certain class of structured LDPC codes. The
codes are designed using a small (n, r) protograph that
is replicated Z times to produce a decoding graph for
a (Z × n, Z × r) code. Using this architecture, we have
implemented a decoder for a (4096, 2048) LDPC code
on a Xilinx Virtex-II 2000 FPGA, and achieved de-
coding speeds of 31 Mbps with 10 fixed iterations. The
implemented message-passing algorithm uses an opti-
mized 3-bit non-uniform quantizer that allows near
floating point performance in the waterfall region,
with drastically smaller hardware implementation re-
quirements.

I. Structured LDPC Decoder Architecture

We developed an architecture for decoding structured LDPC
codes in which computations are scheduled in space and time.
A structured LDPC code is constructed from a small (n, r)
protograph[1] by making Z copies of each variable and check
node. Each edge in the small protograph represents a set of
edges in the larger code graph which connect Z copies of a
variable node with Z copies of a check node via an arbitrary
permutation (see figure 1).

In our hardware architecture, we instantiate hardware units
for each of the n variable nodes and r check nodes in the
small LDPC protograph. All n variables node units or all r
check node units decode synchronously and in parallel. The
Z copies of the identical small protograph share this hardware
and are operated on serially. Messages are stored in memory
modules, each of which corresponds to an edge in the small
protograph.

The cornerstone of our hardware architecture is the
scheduling of message-updates in space and time. One iter-
ation consists of a check node phase, followed by a variable
node phase. In each phase, there are Z computation cycles to
update the Z messages in each edge memory.

II. Quantized Belief Propagation Algorithm

We use a non-uniform quantization scheme optimized for
regular (3, 6) LDPC codes. Compared to the full floating
point simulation done in software, hardware 3-bit non-uniform
quantization is only off about 0.2 dB, with drastically smaller
hardware implementation requirements. Benefiting from the
small hardware requirement for each processing unit, many
more processing units can be put in one FPGA to decode a
much bigger codeword, thus improving the error-correcting
capability.

III. Performance
1The work described was funded by the IND Technology Pro-

gram and performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronau-
tics and Space Administration.

variable
node

check
node

........

........

........

1 2Z

1 2Z

Permutation

1 2Z

1 2Z

1 2Z

1 2Z

........

n variable nodes

permutation tables
= # edges in small
LDPC protograph

r check nodes

…

…

check
node

…

…

Z c
op

ies

…

Z c
op

ies

…
…

Permutation Permutation

variable
node

variable
node

variable
node

check
node

........

........

........

1 2Z

1 2Z

Permutation

1 2Z

1 2Z

1 2Z

1 2Z

........

n variable nodes

permutation tables
= # edges in small
LDPC protograph

r check nodes

…

…

check
node

…

…

Z c
op

ies

…

Z c
op

ies

…
…

Permutation Permutation

variable
node

variable
node

Figure 1: Structured LDPC decoder architecture

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

(4096,2048)
3−bit quantization
97% slice utilization

(2048,1024)
3−bit quantization
66% slice utilization

(1024,512)
3−bit quantization
53% slice utilization

(4096,2048)
Floating point

Figure 2: Performance/FPGA Area at varying block size

Using our scalable decoder architecture, we implemented
several codes of different block lengths, and ran performance
tests to compare their performance differences. The largest
block length code we can implement on a Xilinx Virtex-II
2000 FPGA chip is a (32, 16)×128 copies = (4096, 2048) code.
The results demonstrate that doubling the block length can
improve the performance by about 0.5 dB (see figure 2).

The decoder throughput depends on two factors: commu-
nication overhead and decoder speed. Decoder speed is pro-
portional to the number of iterations. The measured decoder
speed is 3.18 ns/bit/iteration. The measured communication
overhead is 97.1 ns/bit in our tests. Communication over-
head includes the buffer delay outside the decoder module,
and the time delay writing to and reading from the FPGA
board. Therefore, at 10 iterations, decoding speed is 31 Mbps
without communication overhead or 8 Mbps with communi-
cation overhead.

References

[1] J. Thorpe, “Low-Density Parity-Check (LDPC) Codes Con-
structed from Protographs,” IPN Progress Reports 42-154,
April-June 2003.

